|
|
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
-
- // Package rsa implements RSA encryption as specified in PKCS#1.
- //
- // RSA is a single, fundamental operation that is used in this package to
- // implement either public-key encryption or public-key signatures.
- //
- // The original specification for encryption and signatures with RSA is PKCS#1
- // and the terms "RSA encryption" and "RSA signatures" by default refer to
- // PKCS#1 version 1.5. However, that specification has flaws and new designs
- // should use version two, usually called by just OAEP and PSS, where
- // possible.
- //
- // Two sets of interfaces are included in this package. When a more abstract
- // interface isn't neccessary, there are functions for encrypting/decrypting
- // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
- // over the public-key primitive, the PrivateKey struct implements the
- // Decrypter and Signer interfaces from the crypto package.
- package rsa
-
- import (
- "crypto"
- "crypto/rand"
- "crypto/subtle"
- "errors"
- "hash"
- "io"
- "math/big"
- )
-
- var bigZero = big.NewInt(0)
- var bigOne = big.NewInt(1)
-
- // A PublicKey represents the public part of an RSA key.
- type PublicKey struct {
- N *big.Int // modulus
- E int64 // public exponent
- }
-
- // OAEPOptions is an interface for passing options to OAEP decryption using the
- // crypto.Decrypter interface.
- type OAEPOptions struct {
- // Hash is the hash function that will be used when generating the mask.
- Hash crypto.Hash
- // Label is an arbitrary byte string that must be equal to the value
- // used when encrypting.
- Label []byte
- }
-
- var (
- errPublicModulus = errors.New("crypto/rsa: missing public modulus")
- errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
- errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
- )
-
- // checkPub sanity checks the public key before we use it.
- // We require pub.E to fit into a 32-bit integer so that we
- // do not have different behavior depending on whether
- // int is 32 or 64 bits. See also
- // http://www.imperialviolet.org/2012/03/16/rsae.html.
- func checkPub(pub *PublicKey) error {
- if pub.N == nil {
- return errPublicModulus
- }
- if pub.E < 2 {
- return errPublicExponentSmall
- }
- if pub.E > 1<<63-1 {
- return errPublicExponentLarge
- }
- return nil
- }
-
- // A PrivateKey represents an RSA key
- type PrivateKey struct {
- PublicKey // public part.
- D *big.Int // private exponent
- Primes []*big.Int // prime factors of N, has >= 2 elements.
-
- // Precomputed contains precomputed values that speed up private
- // operations, if available.
- Precomputed PrecomputedValues
- }
-
- // Public returns the public key corresponding to priv.
- func (priv *PrivateKey) Public() crypto.PublicKey {
- return &priv.PublicKey
- }
-
- // Sign signs msg with priv, reading randomness from rand. If opts is a
- // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
- // be used. This method is intended to support keys where the private part is
- // kept in, for example, a hardware module. Common uses should use the Sign*
- // functions in this package.
- func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
- if pssOpts, ok := opts.(*PSSOptions); ok {
- return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts)
- }
-
- return SignPKCS1v15(rand, priv, opts.HashFunc(), msg)
- }
-
- // Decrypt decrypts ciphertext with priv. If opts is nil or of type
- // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
- // opts must have type *OAEPOptions and OAEP decryption is done.
- func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
- if opts == nil {
- return DecryptPKCS1v15(rand, priv, ciphertext)
- }
-
- switch opts := opts.(type) {
- case *OAEPOptions:
- return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
-
- case *PKCS1v15DecryptOptions:
- if l := opts.SessionKeyLen; l > 0 {
- plaintext = make([]byte, l)
- if _, err := io.ReadFull(rand, plaintext); err != nil {
- return nil, err
- }
- if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
- return nil, err
- }
- return plaintext, nil
- } else {
- return DecryptPKCS1v15(rand, priv, ciphertext)
- }
-
- default:
- return nil, errors.New("crypto/rsa: invalid options for Decrypt")
- }
- }
-
- type PrecomputedValues struct {
- Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
- Qinv *big.Int // Q^-1 mod P
-
- // CRTValues is used for the 3rd and subsequent primes. Due to a
- // historical accident, the CRT for the first two primes is handled
- // differently in PKCS#1 and interoperability is sufficiently
- // important that we mirror this.
- CRTValues []CRTValue
- }
-
- // CRTValue contains the precomputed Chinese remainder theorem values.
- type CRTValue struct {
- Exp *big.Int // D mod (prime-1).
- Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
- R *big.Int // product of primes prior to this (inc p and q).
- }
-
- // Validate performs basic sanity checks on the key.
- // It returns nil if the key is valid, or else an error describing a problem.
- func (priv *PrivateKey) Validate() error {
- if err := checkPub(&priv.PublicKey); err != nil {
- return err
- }
-
- // Check that Πprimes == n.
- modulus := new(big.Int).Set(bigOne)
- for _, prime := range priv.Primes {
- // Any primes ≤ 1 will cause divide-by-zero panics later.
- if prime.Cmp(bigOne) <= 0 {
- return errors.New("crypto/rsa: invalid prime value")
- }
- modulus.Mul(modulus, prime)
- }
- if modulus.Cmp(priv.N) != 0 {
- return errors.New("crypto/rsa: invalid modulus")
- }
-
- // Check that de ≡ 1 mod p-1, for each prime.
- // This implies that e is coprime to each p-1 as e has a multiplicative
- // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
- // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
- // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
- congruence := new(big.Int)
- de := new(big.Int).SetInt64(int64(priv.E))
- de.Mul(de, priv.D)
- for _, prime := range priv.Primes {
- pminus1 := new(big.Int).Sub(prime, bigOne)
- congruence.Mod(de, pminus1)
- if congruence.Cmp(bigOne) != 0 {
- return errors.New("crypto/rsa: invalid exponents")
- }
- }
- return nil
- }
-
- // GenerateKey generates an RSA keypair of the given bit size using the
- // random source random (for example, crypto/rand.Reader).
- func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
- return GenerateMultiPrimeKey(random, 2, bits)
- }
-
- // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
- // size and the given random source, as suggested in [1]. Although the public
- // keys are compatible (actually, indistinguishable) from the 2-prime case,
- // the private keys are not. Thus it may not be possible to export multi-prime
- // private keys in certain formats or to subsequently import them into other
- // code.
- //
- // Table 1 in [2] suggests maximum numbers of primes for a given size.
- //
- // [1] US patent 4405829 (1972, expired)
- // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
- func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
- priv = new(PrivateKey)
- priv.E = 65537
-
- if nprimes < 2 {
- return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
- }
-
- primes := make([]*big.Int, nprimes)
-
- NextSetOfPrimes:
- for {
- todo := bits
- // crypto/rand should set the top two bits in each prime.
- // Thus each prime has the form
- // p_i = 2^bitlen(p_i) × 0.11... (in base 2).
- // And the product is:
- // P = 2^todo × α
- // where α is the product of nprimes numbers of the form 0.11...
- //
- // If α < 1/2 (which can happen for nprimes > 2), we need to
- // shift todo to compensate for lost bits: the mean value of 0.11...
- // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
- // will give good results.
- if nprimes >= 7 {
- todo += (nprimes - 2) / 5
- }
- for i := 0; i < nprimes; i++ {
- primes[i], err = rand.Prime(random, todo/(nprimes-i))
- if err != nil {
- return nil, err
- }
- todo -= primes[i].BitLen()
- }
-
- // Make sure that primes is pairwise unequal.
- for i, prime := range primes {
- for j := 0; j < i; j++ {
- if prime.Cmp(primes[j]) == 0 {
- continue NextSetOfPrimes
- }
- }
- }
-
- n := new(big.Int).Set(bigOne)
- totient := new(big.Int).Set(bigOne)
- pminus1 := new(big.Int)
- for _, prime := range primes {
- n.Mul(n, prime)
- pminus1.Sub(prime, bigOne)
- totient.Mul(totient, pminus1)
- }
- if n.BitLen() != bits {
- // This should never happen for nprimes == 2 because
- // crypto/rand should set the top two bits in each prime.
- // For nprimes > 2 we hope it does not happen often.
- continue NextSetOfPrimes
- }
-
- g := new(big.Int)
- priv.D = new(big.Int)
- y := new(big.Int)
- e := big.NewInt(int64(priv.E))
- g.GCD(priv.D, y, e, totient)
-
- if g.Cmp(bigOne) == 0 {
- if priv.D.Sign() < 0 {
- priv.D.Add(priv.D, totient)
- }
- priv.Primes = primes
- priv.N = n
-
- break
- }
- }
-
- priv.Precompute()
- return
- }
-
- // incCounter increments a four byte, big-endian counter.
- func incCounter(c *[4]byte) {
- if c[3]++; c[3] != 0 {
- return
- }
- if c[2]++; c[2] != 0 {
- return
- }
- if c[1]++; c[1] != 0 {
- return
- }
- c[0]++
- }
-
- // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
- // specified in PKCS#1 v2.1.
- func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
- var counter [4]byte
- var digest []byte
-
- done := 0
- for done < len(out) {
- hash.Write(seed)
- hash.Write(counter[0:4])
- digest = hash.Sum(digest[:0])
- hash.Reset()
-
- for i := 0; i < len(digest) && done < len(out); i++ {
- out[done] ^= digest[i]
- done++
- }
- incCounter(&counter)
- }
- }
-
- // ErrMessageTooLong is returned when attempting to encrypt a message which is
- // too large for the size of the public key.
- var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
-
- func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
- e := big.NewInt(int64(pub.E))
- c.Exp(m, e, pub.N)
- return c
- }
-
- // EncryptOAEP encrypts the given message with RSA-OAEP.
- //
- // OAEP is parameterised by a hash function that is used as a random oracle.
- // Encryption and decryption of a given message must use the same hash function
- // and sha256.New() is a reasonable choice.
- //
- // The random parameter is used as a source of entropy to ensure that
- // encrypting the same message twice doesn't result in the same ciphertext.
- //
- // The label parameter may contain arbitrary data that will not be encrypted,
- // but which gives important context to the message. For example, if a given
- // public key is used to decrypt two types of messages then distinct label
- // values could be used to ensure that a ciphertext for one purpose cannot be
- // used for another by an attacker. If not required it can be empty.
- //
- // The message must be no longer than the length of the public modulus less
- // twice the hash length plus 2.
- func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
- if err := checkPub(pub); err != nil {
- return nil, err
- }
- hash.Reset()
- k := (pub.N.BitLen() + 7) / 8
- if len(msg) > k-2*hash.Size()-2 {
- err = ErrMessageTooLong
- return
- }
-
- hash.Write(label)
- lHash := hash.Sum(nil)
- hash.Reset()
-
- em := make([]byte, k)
- seed := em[1 : 1+hash.Size()]
- db := em[1+hash.Size():]
-
- copy(db[0:hash.Size()], lHash)
- db[len(db)-len(msg)-1] = 1
- copy(db[len(db)-len(msg):], msg)
-
- _, err = io.ReadFull(random, seed)
- if err != nil {
- return
- }
-
- mgf1XOR(db, hash, seed)
- mgf1XOR(seed, hash, db)
-
- m := new(big.Int)
- m.SetBytes(em)
- c := encrypt(new(big.Int), pub, m)
- out = c.Bytes()
-
- if len(out) < k {
- // If the output is too small, we need to left-pad with zeros.
- t := make([]byte, k)
- copy(t[k-len(out):], out)
- out = t
- }
-
- return
- }
-
- // ErrDecryption represents a failure to decrypt a message.
- // It is deliberately vague to avoid adaptive attacks.
- var ErrDecryption = errors.New("crypto/rsa: decryption error")
-
- // ErrVerification represents a failure to verify a signature.
- // It is deliberately vague to avoid adaptive attacks.
- var ErrVerification = errors.New("crypto/rsa: verification error")
-
- // modInverse returns ia, the inverse of a in the multiplicative group of prime
- // order n. It requires that a be a member of the group (i.e. less than n).
- func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
- g := new(big.Int)
- x := new(big.Int)
- y := new(big.Int)
- g.GCD(x, y, a, n)
- if g.Cmp(bigOne) != 0 {
- // In this case, a and n aren't coprime and we cannot calculate
- // the inverse. This happens because the values of n are nearly
- // prime (being the product of two primes) rather than truly
- // prime.
- return
- }
-
- if x.Cmp(bigOne) < 0 {
- // 0 is not the multiplicative inverse of any element so, if x
- // < 1, then x is negative.
- x.Add(x, n)
- }
-
- return x, true
- }
-
- // Precompute performs some calculations that speed up private key operations
- // in the future.
- func (priv *PrivateKey) Precompute() {
- if priv.Precomputed.Dp != nil {
- return
- }
-
- priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
- priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
-
- priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
- priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
-
- priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
-
- r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
- priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
- for i := 2; i < len(priv.Primes); i++ {
- prime := priv.Primes[i]
- values := &priv.Precomputed.CRTValues[i-2]
-
- values.Exp = new(big.Int).Sub(prime, bigOne)
- values.Exp.Mod(priv.D, values.Exp)
-
- values.R = new(big.Int).Set(r)
- values.Coeff = new(big.Int).ModInverse(r, prime)
-
- r.Mul(r, prime)
- }
- }
-
- // decrypt performs an RSA decryption, resulting in a plaintext integer. If a
- // random source is given, RSA blinding is used.
- func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
- // TODO(agl): can we get away with reusing blinds?
- if c.Cmp(priv.N) > 0 {
- err = ErrDecryption
- return
- }
-
- var ir *big.Int
- if random != nil {
- // Blinding enabled. Blinding involves multiplying c by r^e.
- // Then the decryption operation performs (m^e * r^e)^d mod n
- // which equals mr mod n. The factor of r can then be removed
- // by multiplying by the multiplicative inverse of r.
-
- var r *big.Int
-
- for {
- r, err = rand.Int(random, priv.N)
- if err != nil {
- return
- }
- if r.Cmp(bigZero) == 0 {
- r = bigOne
- }
- var ok bool
- ir, ok = modInverse(r, priv.N)
- if ok {
- break
- }
- }
- bigE := big.NewInt(int64(priv.E))
- rpowe := new(big.Int).Exp(r, bigE, priv.N)
- cCopy := new(big.Int).Set(c)
- cCopy.Mul(cCopy, rpowe)
- cCopy.Mod(cCopy, priv.N)
- c = cCopy
- }
-
- if priv.Precomputed.Dp == nil {
- m = new(big.Int).Exp(c, priv.D, priv.N)
- } else {
- // We have the precalculated values needed for the CRT.
- m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
- m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
- m.Sub(m, m2)
- if m.Sign() < 0 {
- m.Add(m, priv.Primes[0])
- }
- m.Mul(m, priv.Precomputed.Qinv)
- m.Mod(m, priv.Primes[0])
- m.Mul(m, priv.Primes[1])
- m.Add(m, m2)
-
- for i, values := range priv.Precomputed.CRTValues {
- prime := priv.Primes[2+i]
- m2.Exp(c, values.Exp, prime)
- m2.Sub(m2, m)
- m2.Mul(m2, values.Coeff)
- m2.Mod(m2, prime)
- if m2.Sign() < 0 {
- m2.Add(m2, prime)
- }
- m2.Mul(m2, values.R)
- m.Add(m, m2)
- }
- }
-
- if ir != nil {
- // Unblind.
- m.Mul(m, ir)
- m.Mod(m, priv.N)
- }
-
- return
- }
-
- func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
- m, err = decrypt(random, priv, c)
- if err != nil {
- return nil, err
- }
-
- // In order to defend against errors in the CRT computation, m^e is
- // calculated, which should match the original ciphertext.
- check := encrypt(new(big.Int), &priv.PublicKey, m)
- if c.Cmp(check) != 0 {
- return nil, errors.New("rsa: internal error")
- }
- return m, nil
- }
-
- // DecryptOAEP decrypts ciphertext using RSA-OAEP.
-
- // OAEP is parameterised by a hash function that is used as a random oracle.
- // Encryption and decryption of a given message must use the same hash function
- // and sha256.New() is a reasonable choice.
- //
- // The random parameter, if not nil, is used to blind the private-key operation
- // and avoid timing side-channel attacks. Blinding is purely internal to this
- // function – the random data need not match that used when encrypting.
- //
- // The label parameter must match the value given when encrypting. See
- // EncryptOAEP for details.
- func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
- if err := checkPub(&priv.PublicKey); err != nil {
- return nil, err
- }
- k := (priv.N.BitLen() + 7) / 8
- if len(ciphertext) > k ||
- k < hash.Size()*2+2 {
- err = ErrDecryption
- return
- }
-
- c := new(big.Int).SetBytes(ciphertext)
-
- m, err := decrypt(random, priv, c)
- if err != nil {
- return
- }
-
- hash.Write(label)
- lHash := hash.Sum(nil)
- hash.Reset()
-
- // Converting the plaintext number to bytes will strip any
- // leading zeros so we may have to left pad. We do this unconditionally
- // to avoid leaking timing information. (Although we still probably
- // leak the number of leading zeros. It's not clear that we can do
- // anything about this.)
- em := leftPad(m.Bytes(), k)
-
- firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
-
- seed := em[1 : hash.Size()+1]
- db := em[hash.Size()+1:]
-
- mgf1XOR(seed, hash, db)
- mgf1XOR(db, hash, seed)
-
- lHash2 := db[0:hash.Size()]
-
- // We have to validate the plaintext in constant time in order to avoid
- // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
- // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
- // v2.0. In J. Kilian, editor, Advances in Cryptology.
- lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
-
- // The remainder of the plaintext must be zero or more 0x00, followed
- // by 0x01, followed by the message.
- // lookingForIndex: 1 iff we are still looking for the 0x01
- // index: the offset of the first 0x01 byte
- // invalid: 1 iff we saw a non-zero byte before the 0x01.
- var lookingForIndex, index, invalid int
- lookingForIndex = 1
- rest := db[hash.Size():]
-
- for i := 0; i < len(rest); i++ {
- equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
- equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
- index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
- lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
- invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
- }
-
- if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
- err = ErrDecryption
- return
- }
-
- msg = rest[index+1:]
- return
- }
-
- // leftPad returns a new slice of length size. The contents of input are right
- // aligned in the new slice.
- func leftPad(input []byte, size int) (out []byte) {
- n := len(input)
- if n > size {
- n = size
- }
- out = make([]byte, size)
- copy(out[len(out)-n:], input)
- return
- }
|