|
|
- // Copyright 2011 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
-
- // +build !appengine,!gccgo
-
- // AMD64-specific hardware-assisted CRC32 algorithms. See crc32.go for a
- // description of the interface that each architecture-specific file
- // implements.
-
- package crc32
-
- import "unsafe"
-
- // This file contains the code to call the SSE 4.2 version of the Castagnoli
- // and IEEE CRC.
-
- // haveSSE41/haveSSE42/haveCLMUL are defined in crc_amd64.s and use
- // CPUID to test for SSE 4.1, 4.2 and CLMUL support.
- func haveSSE41() bool
- func haveSSE42() bool
- func haveCLMUL() bool
-
- // castagnoliSSE42 is defined in crc32_amd64.s and uses the SSE4.2 CRC32
- // instruction.
- //go:noescape
- func castagnoliSSE42(crc uint32, p []byte) uint32
-
- // castagnoliSSE42Triple is defined in crc32_amd64.s and uses the SSE4.2 CRC32
- // instruction.
- //go:noescape
- func castagnoliSSE42Triple(
- crcA, crcB, crcC uint32,
- a, b, c []byte,
- rounds uint32,
- ) (retA uint32, retB uint32, retC uint32)
-
- // ieeeCLMUL is defined in crc_amd64.s and uses the PCLMULQDQ
- // instruction as well as SSE 4.1.
- //go:noescape
- func ieeeCLMUL(crc uint32, p []byte) uint32
-
- var sse42 = haveSSE42()
- var useFastIEEE = haveCLMUL() && haveSSE41()
-
- const castagnoliK1 = 168
- const castagnoliK2 = 1344
-
- type sse42Table [4]Table
-
- var castagnoliSSE42TableK1 *sse42Table
- var castagnoliSSE42TableK2 *sse42Table
-
- func archAvailableCastagnoli() bool {
- return sse42
- }
-
- func archInitCastagnoli() {
- if !sse42 {
- panic("arch-specific Castagnoli not available")
- }
- castagnoliSSE42TableK1 = new(sse42Table)
- castagnoliSSE42TableK2 = new(sse42Table)
- // See description in updateCastagnoli.
- // t[0][i] = CRC(i000, O)
- // t[1][i] = CRC(0i00, O)
- // t[2][i] = CRC(00i0, O)
- // t[3][i] = CRC(000i, O)
- // where O is a sequence of K zeros.
- var tmp [castagnoliK2]byte
- for b := 0; b < 4; b++ {
- for i := 0; i < 256; i++ {
- val := uint32(i) << uint32(b*8)
- castagnoliSSE42TableK1[b][i] = castagnoliSSE42(val, tmp[:castagnoliK1])
- castagnoliSSE42TableK2[b][i] = castagnoliSSE42(val, tmp[:])
- }
- }
- }
-
- // castagnoliShift computes the CRC32-C of K1 or K2 zeroes (depending on the
- // table given) with the given initial crc value. This corresponds to
- // CRC(crc, O) in the description in updateCastagnoli.
- func castagnoliShift(table *sse42Table, crc uint32) uint32 {
- return table[3][crc>>24] ^
- table[2][(crc>>16)&0xFF] ^
- table[1][(crc>>8)&0xFF] ^
- table[0][crc&0xFF]
- }
-
- func archUpdateCastagnoli(crc uint32, p []byte) uint32 {
- if !sse42 {
- panic("not available")
- }
-
- // This method is inspired from the algorithm in Intel's white paper:
- // "Fast CRC Computation for iSCSI Polynomial Using CRC32 Instruction"
- // The same strategy of splitting the buffer in three is used but the
- // combining calculation is different; the complete derivation is explained
- // below.
- //
- // -- The basic idea --
- //
- // The CRC32 instruction (available in SSE4.2) can process 8 bytes at a
- // time. In recent Intel architectures the instruction takes 3 cycles;
- // however the processor can pipeline up to three instructions if they
- // don't depend on each other.
- //
- // Roughly this means that we can process three buffers in about the same
- // time we can process one buffer.
- //
- // The idea is then to split the buffer in three, CRC the three pieces
- // separately and then combine the results.
- //
- // Combining the results requires precomputed tables, so we must choose a
- // fixed buffer length to optimize. The longer the length, the faster; but
- // only buffers longer than this length will use the optimization. We choose
- // two cutoffs and compute tables for both:
- // - one around 512: 168*3=504
- // - one around 4KB: 1344*3=4032
- //
- // -- The nitty gritty --
- //
- // Let CRC(I, X) be the non-inverted CRC32-C of the sequence X (with
- // initial non-inverted CRC I). This function has the following properties:
- // (a) CRC(I, AB) = CRC(CRC(I, A), B)
- // (b) CRC(I, A xor B) = CRC(I, A) xor CRC(0, B)
- //
- // Say we want to compute CRC(I, ABC) where A, B, C are three sequences of
- // K bytes each, where K is a fixed constant. Let O be the sequence of K zero
- // bytes.
- //
- // CRC(I, ABC) = CRC(I, ABO xor C)
- // = CRC(I, ABO) xor CRC(0, C)
- // = CRC(CRC(I, AB), O) xor CRC(0, C)
- // = CRC(CRC(I, AO xor B), O) xor CRC(0, C)
- // = CRC(CRC(I, AO) xor CRC(0, B), O) xor CRC(0, C)
- // = CRC(CRC(CRC(I, A), O) xor CRC(0, B), O) xor CRC(0, C)
- //
- // The castagnoliSSE42Triple function can compute CRC(I, A), CRC(0, B),
- // and CRC(0, C) efficiently. We just need to find a way to quickly compute
- // CRC(uvwx, O) given a 4-byte initial value uvwx. We can precompute these
- // values; since we can't have a 32-bit table, we break it up into four
- // 8-bit tables:
- //
- // CRC(uvwx, O) = CRC(u000, O) xor
- // CRC(0v00, O) xor
- // CRC(00w0, O) xor
- // CRC(000x, O)
- //
- // We can compute tables corresponding to the four terms for all 8-bit
- // values.
-
- crc = ^crc
-
- // If a buffer is long enough to use the optimization, process the first few
- // bytes to align the buffer to an 8 byte boundary (if necessary).
- if len(p) >= castagnoliK1*3 {
- delta := int(uintptr(unsafe.Pointer(&p[0])) & 7)
- if delta != 0 {
- delta = 8 - delta
- crc = castagnoliSSE42(crc, p[:delta])
- p = p[delta:]
- }
- }
-
- // Process 3*K2 at a time.
- for len(p) >= castagnoliK2*3 {
- // Compute CRC(I, A), CRC(0, B), and CRC(0, C).
- crcA, crcB, crcC := castagnoliSSE42Triple(
- crc, 0, 0,
- p, p[castagnoliK2:], p[castagnoliK2*2:],
- castagnoliK2/24)
-
- // CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
- crcAB := castagnoliShift(castagnoliSSE42TableK2, crcA) ^ crcB
- // CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
- crc = castagnoliShift(castagnoliSSE42TableK2, crcAB) ^ crcC
- p = p[castagnoliK2*3:]
- }
-
- // Process 3*K1 at a time.
- for len(p) >= castagnoliK1*3 {
- // Compute CRC(I, A), CRC(0, B), and CRC(0, C).
- crcA, crcB, crcC := castagnoliSSE42Triple(
- crc, 0, 0,
- p, p[castagnoliK1:], p[castagnoliK1*2:],
- castagnoliK1/24)
-
- // CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
- crcAB := castagnoliShift(castagnoliSSE42TableK1, crcA) ^ crcB
- // CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
- crc = castagnoliShift(castagnoliSSE42TableK1, crcAB) ^ crcC
- p = p[castagnoliK1*3:]
- }
-
- // Use the simple implementation for what's left.
- crc = castagnoliSSE42(crc, p)
- return ^crc
- }
-
- func archAvailableIEEE() bool {
- return useFastIEEE
- }
-
- var archIeeeTable8 *slicing8Table
-
- func archInitIEEE() {
- if !useFastIEEE {
- panic("not available")
- }
- // We still use slicing-by-8 for small buffers.
- archIeeeTable8 = slicingMakeTable(IEEE)
- }
-
- func archUpdateIEEE(crc uint32, p []byte) uint32 {
- if !useFastIEEE {
- panic("not available")
- }
-
- if len(p) >= 64 {
- left := len(p) & 15
- do := len(p) - left
- crc = ^ieeeCLMUL(^crc, p[:do])
- p = p[do:]
- }
- if len(p) == 0 {
- return crc
- }
- return slicingUpdate(crc, archIeeeTable8, p)
- }
|