|
|
- // Copyright 2009 The Go Authors. All rights reserved.
- // Copyright (c) 2015 Klaus Post
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
-
- package flate
-
- import (
- "fmt"
- "io"
- "math"
- )
-
- const (
- NoCompression = 0
- BestSpeed = 1
- BestCompression = 9
- DefaultCompression = -1
-
- // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
- // entropy encoding. This mode is useful in compressing data that has
- // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
- // that lacks an entropy encoder. Compression gains are achieved when
- // certain bytes in the input stream occur more frequently than others.
- //
- // Note that HuffmanOnly produces a compressed output that is
- // RFC 1951 compliant. That is, any valid DEFLATE decompressor will
- // continue to be able to decompress this output.
- HuffmanOnly = -2
- ConstantCompression = HuffmanOnly // compatibility alias.
-
- logWindowSize = 15
- windowSize = 1 << logWindowSize
- windowMask = windowSize - 1
- logMaxOffsetSize = 15 // Standard DEFLATE
- minMatchLength = 4 // The smallest match that the compressor looks for
- maxMatchLength = 258 // The longest match for the compressor
- minOffsetSize = 1 // The shortest offset that makes any sense
-
- // The maximum number of tokens we put into a single flat block, just too
- // stop things from getting too large.
- maxFlateBlockTokens = 1 << 14
- maxStoreBlockSize = 65535
- hashBits = 17 // After 17 performance degrades
- hashSize = 1 << hashBits
- hashMask = (1 << hashBits) - 1
- hashShift = (hashBits + minMatchLength - 1) / minMatchLength
- maxHashOffset = 1 << 24
-
- skipNever = math.MaxInt32
- )
-
- var useSSE42 bool
-
- type compressionLevel struct {
- good, lazy, nice, chain, fastSkipHashing, level int
- }
-
- // Compression levels have been rebalanced from zlib deflate defaults
- // to give a bigger spread in speed and compression.
- // See https://blog.klauspost.com/rebalancing-deflate-compression-levels/
- var levels = []compressionLevel{
- {}, // 0
- // Level 1-4 uses specialized algorithm - values not used
- {0, 0, 0, 0, 0, 1},
- {0, 0, 0, 0, 0, 2},
- {0, 0, 0, 0, 0, 3},
- {0, 0, 0, 0, 0, 4},
- // For levels 5-6 we don't bother trying with lazy matches.
- // Lazy matching is at least 30% slower, with 1.5% increase.
- {6, 0, 12, 8, 12, 5},
- {8, 0, 24, 16, 16, 6},
- // Levels 7-9 use increasingly more lazy matching
- // and increasingly stringent conditions for "good enough".
- {8, 8, 24, 16, skipNever, 7},
- {10, 16, 24, 64, skipNever, 8},
- {32, 258, 258, 4096, skipNever, 9},
- }
-
- type compressor struct {
- compressionLevel
-
- w *huffmanBitWriter
- bulkHasher func([]byte, []uint32)
-
- // compression algorithm
- fill func(*compressor, []byte) int // copy data to window
- step func(*compressor) // process window
- sync bool // requesting flush
-
- // Input hash chains
- // hashHead[hashValue] contains the largest inputIndex with the specified hash value
- // If hashHead[hashValue] is within the current window, then
- // hashPrev[hashHead[hashValue] & windowMask] contains the previous index
- // with the same hash value.
- chainHead int
- hashHead [hashSize]uint32
- hashPrev [windowSize]uint32
- hashOffset int
-
- // input window: unprocessed data is window[index:windowEnd]
- index int
- window []byte
- windowEnd int
- blockStart int // window index where current tokens start
- byteAvailable bool // if true, still need to process window[index-1].
-
- // queued output tokens
- tokens tokens
-
- // deflate state
- length int
- offset int
- hash uint32
- maxInsertIndex int
- err error
- ii uint16 // position of last match, intended to overflow to reset.
-
- snap snappyEnc
- hashMatch [maxMatchLength + minMatchLength]uint32
- }
-
- func (d *compressor) fillDeflate(b []byte) int {
- if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
- // shift the window by windowSize
- copy(d.window[:], d.window[windowSize:2*windowSize])
- d.index -= windowSize
- d.windowEnd -= windowSize
- if d.blockStart >= windowSize {
- d.blockStart -= windowSize
- } else {
- d.blockStart = math.MaxInt32
- }
- d.hashOffset += windowSize
- if d.hashOffset > maxHashOffset {
- delta := d.hashOffset - 1
- d.hashOffset -= delta
- d.chainHead -= delta
- for i, v := range d.hashPrev {
- if int(v) > delta {
- d.hashPrev[i] = uint32(int(v) - delta)
- } else {
- d.hashPrev[i] = 0
- }
- }
- for i, v := range d.hashHead {
- if int(v) > delta {
- d.hashHead[i] = uint32(int(v) - delta)
- } else {
- d.hashHead[i] = 0
- }
- }
- }
- }
- n := copy(d.window[d.windowEnd:], b)
- d.windowEnd += n
- return n
- }
-
- func (d *compressor) writeBlock(tok tokens, index int, eof bool) error {
- if index > 0 || eof {
- var window []byte
- if d.blockStart <= index {
- window = d.window[d.blockStart:index]
- }
- d.blockStart = index
- d.w.writeBlock(tok.tokens[:tok.n], eof, window)
- return d.w.err
- }
- return nil
- }
-
- // writeBlockSkip writes the current block and uses the number of tokens
- // to determine if the block should be stored on no matches, or
- // only huffman encoded.
- func (d *compressor) writeBlockSkip(tok tokens, index int, eof bool) error {
- if index > 0 || eof {
- if d.blockStart <= index {
- window := d.window[d.blockStart:index]
- // If we removed less than a 64th of all literals
- // we huffman compress the block.
- if int(tok.n) > len(window)-int(tok.n>>6) {
- d.w.writeBlockHuff(eof, window)
- } else {
- // Write a dynamic huffman block.
- d.w.writeBlockDynamic(tok.tokens[:tok.n], eof, window)
- }
- } else {
- d.w.writeBlock(tok.tokens[:tok.n], eof, nil)
- }
- d.blockStart = index
- return d.w.err
- }
- return nil
- }
-
- // fillWindow will fill the current window with the supplied
- // dictionary and calculate all hashes.
- // This is much faster than doing a full encode.
- // Should only be used after a start/reset.
- func (d *compressor) fillWindow(b []byte) {
- // Do not fill window if we are in store-only mode,
- // use constant or Snappy compression.
- switch d.compressionLevel.level {
- case 0, 1, 2:
- return
- }
- // If we are given too much, cut it.
- if len(b) > windowSize {
- b = b[len(b)-windowSize:]
- }
- // Add all to window.
- n := copy(d.window[d.windowEnd:], b)
-
- // Calculate 256 hashes at the time (more L1 cache hits)
- loops := (n + 256 - minMatchLength) / 256
- for j := 0; j < loops; j++ {
- startindex := j * 256
- end := startindex + 256 + minMatchLength - 1
- if end > n {
- end = n
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
-
- if dstSize <= 0 {
- continue
- }
-
- dst := d.hashMatch[:dstSize]
- d.bulkHasher(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
- // Update window information.
- d.windowEnd += n
- d.index = n
- }
-
- // Try to find a match starting at index whose length is greater than prevSize.
- // We only look at chainCount possibilities before giving up.
- // pos = d.index, prevHead = d.chainHead-d.hashOffset, prevLength=minMatchLength-1, lookahead
- func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
- minMatchLook := maxMatchLength
- if lookahead < minMatchLook {
- minMatchLook = lookahead
- }
-
- win := d.window[0 : pos+minMatchLook]
-
- // We quit when we get a match that's at least nice long
- nice := len(win) - pos
- if d.nice < nice {
- nice = d.nice
- }
-
- // If we've got a match that's good enough, only look in 1/4 the chain.
- tries := d.chain
- length = prevLength
- if length >= d.good {
- tries >>= 2
- }
-
- wEnd := win[pos+length]
- wPos := win[pos:]
- minIndex := pos - windowSize
-
- for i := prevHead; tries > 0; tries-- {
- if wEnd == win[i+length] {
- n := matchLen(win[i:], wPos, minMatchLook)
-
- if n > length && (n > minMatchLength || pos-i <= 4096) {
- length = n
- offset = pos - i
- ok = true
- if n >= nice {
- // The match is good enough that we don't try to find a better one.
- break
- }
- wEnd = win[pos+n]
- }
- }
- if i == minIndex {
- // hashPrev[i & windowMask] has already been overwritten, so stop now.
- break
- }
- i = int(d.hashPrev[i&windowMask]) - d.hashOffset
- if i < minIndex || i < 0 {
- break
- }
- }
- return
- }
-
- // Try to find a match starting at index whose length is greater than prevSize.
- // We only look at chainCount possibilities before giving up.
- // pos = d.index, prevHead = d.chainHead-d.hashOffset, prevLength=minMatchLength-1, lookahead
- func (d *compressor) findMatchSSE(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
- minMatchLook := maxMatchLength
- if lookahead < minMatchLook {
- minMatchLook = lookahead
- }
-
- win := d.window[0 : pos+minMatchLook]
-
- // We quit when we get a match that's at least nice long
- nice := len(win) - pos
- if d.nice < nice {
- nice = d.nice
- }
-
- // If we've got a match that's good enough, only look in 1/4 the chain.
- tries := d.chain
- length = prevLength
- if length >= d.good {
- tries >>= 2
- }
-
- wEnd := win[pos+length]
- wPos := win[pos:]
- minIndex := pos - windowSize
-
- for i := prevHead; tries > 0; tries-- {
- if wEnd == win[i+length] {
- n := matchLenSSE4(win[i:], wPos, minMatchLook)
-
- if n > length && (n > minMatchLength || pos-i <= 4096) {
- length = n
- offset = pos - i
- ok = true
- if n >= nice {
- // The match is good enough that we don't try to find a better one.
- break
- }
- wEnd = win[pos+n]
- }
- }
- if i == minIndex {
- // hashPrev[i & windowMask] has already been overwritten, so stop now.
- break
- }
- i = int(d.hashPrev[i&windowMask]) - d.hashOffset
- if i < minIndex || i < 0 {
- break
- }
- }
- return
- }
-
- func (d *compressor) writeStoredBlock(buf []byte) error {
- if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
- return d.w.err
- }
- d.w.writeBytes(buf)
- return d.w.err
- }
-
- const hashmul = 0x1e35a7bd
-
- // hash4 returns a hash representation of the first 4 bytes
- // of the supplied slice.
- // The caller must ensure that len(b) >= 4.
- func hash4(b []byte) uint32 {
- return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
- }
-
- // bulkHash4 will compute hashes using the same
- // algorithm as hash4
- func bulkHash4(b []byte, dst []uint32) {
- if len(b) < minMatchLength {
- return
- }
- hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
- dst[0] = (hb * hashmul) >> (32 - hashBits)
- end := len(b) - minMatchLength + 1
- for i := 1; i < end; i++ {
- hb = (hb << 8) | uint32(b[i+3])
- dst[i] = (hb * hashmul) >> (32 - hashBits)
- }
- }
-
- // matchLen returns the number of matching bytes in a and b
- // up to length 'max'. Both slices must be at least 'max'
- // bytes in size.
- func matchLen(a, b []byte, max int) int {
- a = a[:max]
- b = b[:len(a)]
- for i, av := range a {
- if b[i] != av {
- return i
- }
- }
- return max
- }
-
- func (d *compressor) initDeflate() {
- d.window = make([]byte, 2*windowSize)
- d.hashOffset = 1
- d.length = minMatchLength - 1
- d.offset = 0
- d.byteAvailable = false
- d.index = 0
- d.hash = 0
- d.chainHead = -1
- d.bulkHasher = bulkHash4
- if useSSE42 {
- d.bulkHasher = crc32sseAll
- }
- }
-
- // Assumes that d.fastSkipHashing != skipNever,
- // otherwise use deflateLazy
- func (d *compressor) deflate() {
-
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- if d.tokens.n > 0 {
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- ch := d.hashHead[d.hash&hashMask]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash&hashMask] = uint32(d.index + d.hashOffset)
- }
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > minMatchLength-1 {
- if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if d.length >= minMatchLength {
- d.ii = 0
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- // "d.length-3" should NOT be "d.length-minMatchLength", since the format always assume 3
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize))
- d.tokens.n++
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- if d.length <= d.fastSkipHashing {
- var newIndex int
- newIndex = d.index + d.length
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
- bulkHash4(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
- d.index = newIndex
- } else {
- // For matches this long, we don't bother inserting each individual
- // item into the table.
- d.index += d.length
- if d.index < d.maxInsertIndex {
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- }
- }
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- d.ii++
- end := d.index + int(d.ii>>uint(d.fastSkipHashing)) + 1
- if end > d.windowEnd {
- end = d.windowEnd
- }
- for i := d.index; i < end; i++ {
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[i]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlockSkip(d.tokens, i+1, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- d.index = end
- }
- }
- }
-
- // deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
- // meaning it always has lazy matching on.
- func (d *compressor) deflateLazy() {
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- // Flush current output block if any.
- if d.byteAvailable {
- // There is still one pending token that needs to be flushed
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- d.byteAvailable = false
- }
- if d.tokens.n > 0 {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = hash4(d.window[d.index : d.index+minMatchLength])
- ch := d.hashHead[d.hash&hashMask]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash&hashMask] = uint32(d.index + d.hashOffset)
- }
- prevLength := d.length
- prevOffset := d.offset
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
- if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if prevLength >= minMatchLength && d.length <= prevLength {
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
- d.tokens.n++
-
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- var newIndex int
- newIndex = d.index + prevLength - 1
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
- bulkHash4(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
-
- d.index = newIndex
- d.byteAvailable = false
- d.length = minMatchLength - 1
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- // Reset, if we got a match this run.
- if d.length >= minMatchLength {
- d.ii = 0
- }
- // We have a byte waiting. Emit it.
- if d.byteAvailable {
- d.ii++
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- d.index++
-
- // If we have a long run of no matches, skip additional bytes
- // Resets when d.ii overflows after 64KB.
- if d.ii > 31 {
- n := int(d.ii >> 5)
- for j := 0; j < n; j++ {
- if d.index >= d.windowEnd-1 {
- break
- }
-
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- d.index++
- }
- // Flush last byte
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- d.byteAvailable = false
- // d.length = minMatchLength - 1 // not needed, since d.ii is reset above, so it should never be > minMatchLength
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- } else {
- d.index++
- d.byteAvailable = true
- }
- }
- }
- }
-
- // Assumes that d.fastSkipHashing != skipNever,
- // otherwise use deflateLazySSE
- func (d *compressor) deflateSSE() {
-
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- if d.tokens.n > 0 {
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- ch := d.hashHead[d.hash]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
- }
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > minMatchLength-1 {
- if newLength, newOffset, ok := d.findMatchSSE(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if d.length >= minMatchLength {
- d.ii = 0
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- // "d.length-3" should NOT be "d.length-minMatchLength", since the format always assume 3
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(d.length-3), uint32(d.offset-minOffsetSize))
- d.tokens.n++
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- if d.length <= d.fastSkipHashing {
- var newIndex int
- newIndex = d.index + d.length
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
-
- crc32sseAll(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
- d.index = newIndex
- } else {
- // For matches this long, we don't bother inserting each individual
- // item into the table.
- d.index += d.length
- if d.index < d.maxInsertIndex {
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- }
- }
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlockSkip(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- d.ii++
- end := d.index + int(d.ii>>5) + 1
- if end > d.windowEnd {
- end = d.windowEnd
- }
- for i := d.index; i < end; i++ {
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[i]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlockSkip(d.tokens, i+1, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- d.index = end
- }
- }
- }
-
- // deflateLazy is the same as deflate, but with d.fastSkipHashing == skipNever,
- // meaning it always has lazy matching on.
- func (d *compressor) deflateLazySSE() {
- // Sanity enables additional runtime tests.
- // It's intended to be used during development
- // to supplement the currently ad-hoc unit tests.
- const sanity = false
-
- if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
- return
- }
-
- d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
- if d.index < d.maxInsertIndex {
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- }
-
- for {
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- lookahead := d.windowEnd - d.index
- if lookahead < minMatchLength+maxMatchLength {
- if !d.sync {
- return
- }
- if sanity && d.index > d.windowEnd {
- panic("index > windowEnd")
- }
- if lookahead == 0 {
- // Flush current output block if any.
- if d.byteAvailable {
- // There is still one pending token that needs to be flushed
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- d.byteAvailable = false
- }
- if d.tokens.n > 0 {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- return
- }
- }
- if d.index < d.maxInsertIndex {
- // Update the hash
- d.hash = crc32sse(d.window[d.index:d.index+minMatchLength]) & hashMask
- ch := d.hashHead[d.hash]
- d.chainHead = int(ch)
- d.hashPrev[d.index&windowMask] = ch
- d.hashHead[d.hash] = uint32(d.index + d.hashOffset)
- }
- prevLength := d.length
- prevOffset := d.offset
- d.length = minMatchLength - 1
- d.offset = 0
- minIndex := d.index - windowSize
- if minIndex < 0 {
- minIndex = 0
- }
-
- if d.chainHead-d.hashOffset >= minIndex && lookahead > prevLength && prevLength < d.lazy {
- if newLength, newOffset, ok := d.findMatchSSE(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
- d.length = newLength
- d.offset = newOffset
- }
- }
- if prevLength >= minMatchLength && d.length <= prevLength {
- // There was a match at the previous step, and the current match is
- // not better. Output the previous match.
- d.tokens.tokens[d.tokens.n] = matchToken(uint32(prevLength-3), uint32(prevOffset-minOffsetSize))
- d.tokens.n++
-
- // Insert in the hash table all strings up to the end of the match.
- // index and index-1 are already inserted. If there is not enough
- // lookahead, the last two strings are not inserted into the hash
- // table.
- var newIndex int
- newIndex = d.index + prevLength - 1
- // Calculate missing hashes
- end := newIndex
- if end > d.maxInsertIndex {
- end = d.maxInsertIndex
- }
- end += minMatchLength - 1
- startindex := d.index + 1
- if startindex > d.maxInsertIndex {
- startindex = d.maxInsertIndex
- }
- tocheck := d.window[startindex:end]
- dstSize := len(tocheck) - minMatchLength + 1
- if dstSize > 0 {
- dst := d.hashMatch[:dstSize]
- crc32sseAll(tocheck, dst)
- var newH uint32
- for i, val := range dst {
- di := i + startindex
- newH = val & hashMask
- // Get previous value with the same hash.
- // Our chain should point to the previous value.
- d.hashPrev[di&windowMask] = d.hashHead[newH]
- // Set the head of the hash chain to us.
- d.hashHead[newH] = uint32(di + d.hashOffset)
- }
- d.hash = newH
- }
-
- d.index = newIndex
- d.byteAvailable = false
- d.length = minMatchLength - 1
- if d.tokens.n == maxFlateBlockTokens {
- // The block includes the current character
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- } else {
- // Reset, if we got a match this run.
- if d.length >= minMatchLength {
- d.ii = 0
- }
- // We have a byte waiting. Emit it.
- if d.byteAvailable {
- d.ii++
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- d.index++
-
- // If we have a long run of no matches, skip additional bytes
- // Resets when d.ii overflows after 64KB.
- if d.ii > 31 {
- n := int(d.ii >> 6)
- for j := 0; j < n; j++ {
- if d.index >= d.windowEnd-1 {
- break
- }
-
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- d.index++
- }
- // Flush last byte
- d.tokens.tokens[d.tokens.n] = literalToken(uint32(d.window[d.index-1]))
- d.tokens.n++
- d.byteAvailable = false
- // d.length = minMatchLength - 1 // not needed, since d.ii is reset above, so it should never be > minMatchLength
- if d.tokens.n == maxFlateBlockTokens {
- if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
- return
- }
- d.tokens.n = 0
- }
- }
- } else {
- d.index++
- d.byteAvailable = true
- }
- }
- }
- }
-
- func (d *compressor) store() {
- if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
- d.err = d.writeStoredBlock(d.window[:d.windowEnd])
- d.windowEnd = 0
- }
- }
-
- // fillWindow will fill the buffer with data for huffman-only compression.
- // The number of bytes copied is returned.
- func (d *compressor) fillBlock(b []byte) int {
- n := copy(d.window[d.windowEnd:], b)
- d.windowEnd += n
- return n
- }
-
- // storeHuff will compress and store the currently added data,
- // if enough has been accumulated or we at the end of the stream.
- // Any error that occurred will be in d.err
- func (d *compressor) storeHuff() {
- if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
- return
- }
- d.w.writeBlockHuff(false, d.window[:d.windowEnd])
- d.err = d.w.err
- d.windowEnd = 0
- }
-
- // storeHuff will compress and store the currently added data,
- // if enough has been accumulated or we at the end of the stream.
- // Any error that occurred will be in d.err
- func (d *compressor) storeSnappy() {
- // We only compress if we have maxStoreBlockSize.
- if d.windowEnd < maxStoreBlockSize {
- if !d.sync {
- return
- }
- // Handle extremely small sizes.
- if d.windowEnd < 128 {
- if d.windowEnd == 0 {
- return
- }
- if d.windowEnd <= 32 {
- d.err = d.writeStoredBlock(d.window[:d.windowEnd])
- d.tokens.n = 0
- d.windowEnd = 0
- } else {
- d.w.writeBlockHuff(false, d.window[:d.windowEnd])
- d.err = d.w.err
- }
- d.tokens.n = 0
- d.windowEnd = 0
- d.snap.Reset()
- return
- }
- }
-
- d.snap.Encode(&d.tokens, d.window[:d.windowEnd])
- // If we made zero matches, store the block as is.
- if int(d.tokens.n) == d.windowEnd {
- d.err = d.writeStoredBlock(d.window[:d.windowEnd])
- // If we removed less than 1/16th, huffman compress the block.
- } else if int(d.tokens.n) > d.windowEnd-(d.windowEnd>>4) {
- d.w.writeBlockHuff(false, d.window[:d.windowEnd])
- d.err = d.w.err
- } else {
- d.w.writeBlockDynamic(d.tokens.tokens[:d.tokens.n], false, d.window[:d.windowEnd])
- d.err = d.w.err
- }
- d.tokens.n = 0
- d.windowEnd = 0
- }
-
- // write will add input byte to the stream.
- // Unless an error occurs all bytes will be consumed.
- func (d *compressor) write(b []byte) (n int, err error) {
- if d.err != nil {
- return 0, d.err
- }
- n = len(b)
- for len(b) > 0 {
- d.step(d)
- b = b[d.fill(d, b):]
- if d.err != nil {
- return 0, d.err
- }
- }
- return n, d.err
- }
-
- func (d *compressor) syncFlush() error {
- d.sync = true
- if d.err != nil {
- return d.err
- }
- d.step(d)
- if d.err == nil {
- d.w.writeStoredHeader(0, false)
- d.w.flush()
- d.err = d.w.err
- }
- d.sync = false
- return d.err
- }
-
- func (d *compressor) init(w io.Writer, level int) (err error) {
- d.w = newHuffmanBitWriter(w)
-
- switch {
- case level == NoCompression:
- d.window = make([]byte, maxStoreBlockSize)
- d.fill = (*compressor).fillBlock
- d.step = (*compressor).store
- case level == ConstantCompression:
- d.window = make([]byte, maxStoreBlockSize)
- d.fill = (*compressor).fillBlock
- d.step = (*compressor).storeHuff
- case level >= 1 && level <= 4:
- d.snap = newSnappy(level)
- d.window = make([]byte, maxStoreBlockSize)
- d.fill = (*compressor).fillBlock
- d.step = (*compressor).storeSnappy
- case level == DefaultCompression:
- level = 5
- fallthrough
- case 5 <= level && level <= 9:
- d.compressionLevel = levels[level]
- d.initDeflate()
- d.fill = (*compressor).fillDeflate
- if d.fastSkipHashing == skipNever {
- if useSSE42 {
- d.step = (*compressor).deflateLazySSE
- } else {
- d.step = (*compressor).deflateLazy
- }
- } else {
- if useSSE42 {
- d.step = (*compressor).deflateSSE
- } else {
- d.step = (*compressor).deflate
-
- }
- }
- default:
- return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
- }
- return nil
- }
-
- // reset the state of the compressor.
- func (d *compressor) reset(w io.Writer) {
- d.w.reset(w)
- d.sync = false
- d.err = nil
- // We only need to reset a few things for Snappy.
- if d.snap != nil {
- d.snap.Reset()
- d.windowEnd = 0
- d.tokens.n = 0
- return
- }
- switch d.compressionLevel.chain {
- case 0:
- // level was NoCompression or ConstantCompresssion.
- d.windowEnd = 0
- default:
- d.chainHead = -1
- for i := range d.hashHead {
- d.hashHead[i] = 0
- }
- for i := range d.hashPrev {
- d.hashPrev[i] = 0
- }
- d.hashOffset = 1
- d.index, d.windowEnd = 0, 0
- d.blockStart, d.byteAvailable = 0, false
- d.tokens.n = 0
- d.length = minMatchLength - 1
- d.offset = 0
- d.hash = 0
- d.ii = 0
- d.maxInsertIndex = 0
- }
- }
-
- func (d *compressor) close() error {
- if d.err != nil {
- return d.err
- }
- d.sync = true
- d.step(d)
- if d.err != nil {
- return d.err
- }
- if d.w.writeStoredHeader(0, true); d.w.err != nil {
- return d.w.err
- }
- d.w.flush()
- return d.w.err
- }
-
- // NewWriter returns a new Writer compressing data at the given level.
- // Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
- // higher levels typically run slower but compress more.
- // Level 0 (NoCompression) does not attempt any compression; it only adds the
- // necessary DEFLATE framing.
- // Level -1 (DefaultCompression) uses the default compression level.
- // Level -2 (ConstantCompression) will use Huffman compression only, giving
- // a very fast compression for all types of input, but sacrificing considerable
- // compression efficiency.
- //
- // If level is in the range [-2, 9] then the error returned will be nil.
- // Otherwise the error returned will be non-nil.
- func NewWriter(w io.Writer, level int) (*Writer, error) {
- var dw Writer
- if err := dw.d.init(w, level); err != nil {
- return nil, err
- }
- return &dw, nil
- }
-
- // NewWriterDict is like NewWriter but initializes the new
- // Writer with a preset dictionary. The returned Writer behaves
- // as if the dictionary had been written to it without producing
- // any compressed output. The compressed data written to w
- // can only be decompressed by a Reader initialized with the
- // same dictionary.
- func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
- dw := &dictWriter{w}
- zw, err := NewWriter(dw, level)
- if err != nil {
- return nil, err
- }
- zw.d.fillWindow(dict)
- zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
- return zw, err
- }
-
- type dictWriter struct {
- w io.Writer
- }
-
- func (w *dictWriter) Write(b []byte) (n int, err error) {
- return w.w.Write(b)
- }
-
- // A Writer takes data written to it and writes the compressed
- // form of that data to an underlying writer (see NewWriter).
- type Writer struct {
- d compressor
- dict []byte
- }
-
- // Write writes data to w, which will eventually write the
- // compressed form of data to its underlying writer.
- func (w *Writer) Write(data []byte) (n int, err error) {
- return w.d.write(data)
- }
-
- // Flush flushes any pending data to the underlying writer.
- // It is useful mainly in compressed network protocols, to ensure that
- // a remote reader has enough data to reconstruct a packet.
- // Flush does not return until the data has been written.
- // Calling Flush when there is no pending data still causes the Writer
- // to emit a sync marker of at least 4 bytes.
- // If the underlying writer returns an error, Flush returns that error.
- //
- // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
- func (w *Writer) Flush() error {
- // For more about flushing:
- // http://www.bolet.org/~pornin/deflate-flush.html
- return w.d.syncFlush()
- }
-
- // Close flushes and closes the writer.
- func (w *Writer) Close() error {
- return w.d.close()
- }
-
- // Reset discards the writer's state and makes it equivalent to
- // the result of NewWriter or NewWriterDict called with dst
- // and w's level and dictionary.
- func (w *Writer) Reset(dst io.Writer) {
- if dw, ok := w.d.w.writer.(*dictWriter); ok {
- // w was created with NewWriterDict
- dw.w = dst
- w.d.reset(dw)
- w.d.fillWindow(w.dict)
- } else {
- // w was created with NewWriter
- w.d.reset(dst)
- }
- }
-
- // ResetDict discards the writer's state and makes it equivalent to
- // the result of NewWriter or NewWriterDict called with dst
- // and w's level, but sets a specific dictionary.
- func (w *Writer) ResetDict(dst io.Writer, dict []byte) {
- w.dict = dict
- w.d.reset(dst)
- w.d.fillWindow(w.dict)
- }
|