You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

308 lines
13 KiB

#!/usr/bin/env python3
import cv2
import numpy as np
from scipy.spatial.transform import Rotation
import deep_models_shared_python3 as dm
class HeadPoseEstimator:
def __init__(self, models_directory, use_neural_compute_stick=False):
# Load the models
models_dir = models_directory
print('Using the following directory to load object detector models:', models_dir)
# file with network architecture and other information
head_detection_model_prototxt_filename = models_dir + '/head_detection/deploy.prototxt'
# file with network weights
head_detection_model_caffemodel_filename = models_dir + '/head_detection/res10_300x300_ssd_iter_140000.caffemodel'
self.face_confidence_threshold = 0.2
print('attempting to load neural network from files')
print('prototxt file =', head_detection_model_prototxt_filename)
print('caffemodel file =', head_detection_model_caffemodel_filename)
self.head_detection_model = cv2.dnn.readNetFromCaffe(head_detection_model_prototxt_filename, head_detection_model_caffemodel_filename)
dm.print_model_info(self.head_detection_model, 'head_detection_model')
# attempt to use Neural Compute Stick 2
if use_neural_compute_stick:
print('HeadPoseEstimator.__init__: Attempting to use an Intel Neural Compute Stick 2 using the following command: self.head_detection_model.setPreferableTarget(cv2.dnn.DNN_TARGET_MYRIAD)')
self.head_detection_model.setPreferableTarget(cv2.dnn.DNN_TARGET_MYRIAD)
head_pose_model_dir = models_dir + '/open_model_zoo/head-pose-estimation-adas-0001/FP32/'
head_pose_weights_filename = head_pose_model_dir + 'head-pose-estimation-adas-0001.bin'
head_pose_config_filename = head_pose_model_dir + 'head-pose-estimation-adas-0001.xml'
self.head_pose_model = cv2.dnn.readNet(head_pose_weights_filename, head_pose_config_filename)
if use_neural_compute_stick:
print('Not attempting to use a Intel Neural Compute Stick 2 for head pose estimation due to potential errors.')
dm.print_model_info(self.head_pose_model, 'head_pose_model')
landmarks_model_dir = models_dir + '/open_model_zoo/facial-landmarks-35-adas-0002/FP32/'
landmarks_weights_filename = landmarks_model_dir + 'facial-landmarks-35-adas-0002.bin'
landmarks_config_filename = landmarks_model_dir + 'facial-landmarks-35-adas-0002.xml'
self.landmarks_model = cv2.dnn.readNet(landmarks_weights_filename, landmarks_config_filename)
if use_neural_compute_stick:
print('Not attempting to use a Intel Neural Compute Stick 2 for facial landmarks due to potential errors.')
dm.print_model_info(self.head_pose_model, 'head_pose_model')
dm.print_model_info(self.landmarks_model, 'landmarks_model')
self.landmark_names = ['right_eye_left', 'right_eye_right',
'left_eye_right', 'left_eye_left', 'nose_tip',
'nose_bottom', 'nose_right', 'nose_left', 'mouth_right',
'mouth_left', 'mouth_top', 'mouth_bottom',
'right_eyebrow_right', 'right_eyebrow_middle', 'right_eyebrow_left',
'left_eyebrow_right', 'left_eyebrow_middle', 'left_eyebrow_left',
'right_cheek_18', 'right_cheek_19', 'right_cheek_20', 'right_cheek_21',
'right_cheek_22', 'right_cheek_23', 'right_cheek_24',
'chin_right', 'chin_middle', 'chin_left',
'left_cheek_28', 'left_cheek_29', 'left_cheek_30', 'left_cheek_31',
'left_cheek_32', 'left_cheek_33', 'left_cheek_34']
def get_landmark_names(self):
return self.landmark_names
def get_landmark_colors(self):
return None
def get_landmark_color_dict(self):
return None
def detect_faces(self, rgb_image):
orig_h, orig_w, c = rgb_image.shape
face_image = rgb_image
rot_h, rot_w, c = face_image.shape
# Assumes that the width is smaller than the height, and crop
# a width x width square image from the top.
square_face_image = face_image[:rot_w, :, :]
sqr_h, sqr_w, c = square_face_image.shape
network_image = cv2.resize(square_face_image, (300, 300))
# Some magic numbers came from
# https://www.pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning/
face_image_blob = cv2.dnn.blobFromImage(network_image, 1.0, (300, 300), (104.0, 177.0, 123.0))
self.head_detection_model.setInput(face_image_blob)
face_detections = self.head_detection_model.forward()[0,0,:,:]
confidence_mask = face_detections[:, 2] > self.face_confidence_threshold
face_detections = face_detections[confidence_mask]
coordinates = face_detections[:, 3:7]
# Scale and rotate coordinates to the original image
coordinates = coordinates * np.array([sqr_w, sqr_h, sqr_w, sqr_h])
face_id = 0
boxes = []
for x0, y0, x1, y1 in coordinates:
orig_y0 = y0
orig_y1 = y1
orig_x0 = x0
orig_x1 = x1
face_id += 1
bounding_box = [orig_x0, orig_y0, orig_x1, orig_y1]
boxes.append(bounding_box)
return boxes
def get_sub_image(self, rgb_image, bounding_box, enlarge_box=True, enlarge_scale=1.15):
if enlarge_box:
scale = enlarge_scale
orig_h, orig_w, c = rgb_image.shape
x0 = bounding_box[0]
y0 = bounding_box[1]
x1 = bounding_box[2]
y1 = bounding_box[3]
m_x = (x1 + x0) / 2.0
m_y = (y1 + y0) / 2.0
b_w = x1 - x0
b_h = y1 - y0
b_w = scale * b_w
b_h = scale * b_h
x0 = int(round(m_x - (b_w/2.0)))
x1 = int(round(m_x + (b_w/2.0)))
y0 = int(round(m_y - (b_h/2.0)))
y1 = int(round(m_y + (b_h/2.0)))
x0 = max(0, x0)
x1 = min(orig_w, x1)
y0 = max(0, y0)
y1 = min(orig_h, y1)
else:
x0 = int(round(bounding_box[0]))
y0 = int(round(bounding_box[1]))
x1 = int(round(bounding_box[2]))
y1 = int(round(bounding_box[3]))
actual_bounding_box = [x0, y0, x1, y1]
image_to_crop = rgb_image
sub_image = image_to_crop[y0:y1, x0:x1, :]
return sub_image, actual_bounding_box
def estimate_head_pose(self, rgb_image, bounding_box, enlarge_box=True, enlarge_scale=1.15):
face_crop_image, actual_bounding_box = self.get_sub_image(rgb_image, bounding_box, enlarge_box=enlarge_box, enlarge_scale=enlarge_scale)
sqr_h, sqr_w, c = face_crop_image.shape
if (sqr_h > 0) and (sqr_w > 0):
head_pose_image_blob = cv2.dnn.blobFromImage(face_crop_image,
size=(60, 60),
swapRB=False,
crop=False,
ddepth=cv2.CV_32F)
self.head_pose_model.setInput(head_pose_image_blob)
head_pose_out = self.head_pose_model.forward(['angle_r_fc', 'angle_p_fc', 'angle_y_fc'])
rpy = head_pose_out
roll = rpy[0][0][0]
pitch = rpy[1][0][0]
yaw = rpy[2][0][0]
pitch = pitch * np.pi/180.0
roll = roll * np.pi/180.0
yaw = yaw * np.pi/180.0
return yaw, pitch, roll
return None, None, None
def detect_facial_landmarks(self, rgb_image, bounding_box, enlarge_box=True, enlarge_scale=1.15):
face_crop_image, actual_bounding_box = self.get_sub_image(rgb_image, bounding_box, enlarge_box=enlarge_box, enlarge_scale=enlarge_scale)
sqr_h, sqr_w, c = face_crop_image.shape
if (sqr_h > 0) and (sqr_w > 0):
landmarks_image_blob = cv2.dnn.blobFromImage(face_crop_image,
size=(60, 60),
swapRB=False,
crop=False,
ddepth=cv2.CV_32F)
self.landmarks_model.setInput(landmarks_image_blob)
landmarks_out = self.landmarks_model.forward()
s = landmarks_out.shape
out = np.reshape(landmarks_out[0], (s[1]//2, 2))
x0, y0, x1, y1 = actual_bounding_box
landmarks = {}
for n, v in enumerate(out):
x = int(round((v[0] * sqr_w) + x0))
y = int(round((v[1] * sqr_h) + y0))
name = self.landmark_names[n]
landmarks[name] = (x,y)
return landmarks, self.landmark_names.copy()
return None, None
def draw_bounding_box(self, image, bounding_box):
x0 = int(round(bounding_box[0]))
y0 = int(round(bounding_box[1]))
x1 = int(round(bounding_box[2]))
y1 = int(round(bounding_box[3]))
color = (0, 0, 255)
thickness = 2
cv2.rectangle(image, (x0, y0), (x1, y1), color, thickness)
def draw_head_pose(self, image, yaw, pitch, roll, bounding_box):
x0, y0, x1, y1 = bounding_box
face_x = (x1 + x0) / 2.0
face_y = (y1 + y0) / 2.0
#
# opencv uses right-handed coordinate system
# x points to the right of the image
# y points to the bottom of the image
# z points into the image
#
h, w, c = image.shape
camera_center = (w/2.0, h/2.0)
#For rendering with an unknown camera
focal_length = 50.0
camera_matrix = np.array([[focal_length, 0.0, camera_center[0]],
[0.0, focal_length, camera_center[1]],
[0.0, 0.0, 1.0]])
face_translation = np.array([0.0, 0.0, 3000.0])
distortion_coefficients = np.array([0.0, 0.0, 0.0, 0.0])
# negate the directions of the y and z axes
axes = np.array([[2000.0, 0.0, 0.0 ],
[0.0, -2000.0, 0.0 ],
[0.0, 0.0, -2000.0],
[0.0, 0.0, 0.0 ]])
head_ypr = np.array([-yaw, pitch, roll])
rotation_mat = Rotation.from_euler('yxz', head_ypr).as_dcm()
rotation_vec, jacobian = cv2.Rodrigues(rotation_mat)
image_points, jacobian = cv2.projectPoints(axes, rotation_vec, face_translation, camera_matrix, distortion_coefficients)
face_pix = np.array([face_x, face_y])
origin = image_points[3].ravel()
x_axis = (image_points[0].ravel() - origin) + face_pix
y_axis = (image_points[1].ravel() - origin) + face_pix
z_axis = (image_points[2].ravel() - origin) + face_pix
p0 = tuple(np.int32(np.round(face_pix)))
p1 = tuple(np.int32(np.round(x_axis)))
cv2.line(image, p0, p1, (0, 0, 255), 2)
p1 = tuple(np.int32(np.round(y_axis)))
cv2.line(image, p0, p1, (0, 255, 0), 2)
p1 = tuple(np.int32(np.round(z_axis)))
cv2.line(image, p0, p1, (255, 0, 0), 2)
def draw_landmarks(self, image, landmarks):
for name, xy in landmarks.items():
x = xy[0]
y = xy[1]
if 'mouth' in name:
color = (255, 0, 0)
elif 'nose' in name:
color = (0, 255, 0)
elif 'eyebrow' in name:
color = (0, 0, 0)
elif 'right_eye' in name:
color = (255, 255, 0)
elif 'left_eye' in name:
color = (0, 255, 255)
elif 'chin' in name:
color = (255, 0, 255)
else:
color = (0, 0, 255)
cv2.circle(image, (x,y), 2, color, 1)
font_scale = 1.0
line_color = [0, 0, 0]
line_width = 1
font = cv2.FONT_HERSHEY_PLAIN
def apply_to_image(self, rgb_image, draw_output=False):
if draw_output:
output_image = rgb_image.copy()
else:
output_image = None
heads = []
boxes = self.detect_faces(rgb_image)
facial_landmark_names = self.landmark_names.copy()
for bounding_box in boxes:
if draw_output:
self.draw_bounding_box(output_image, bounding_box)
yaw, pitch, roll = self.estimate_head_pose(rgb_image, bounding_box, enlarge_box=True, enlarge_scale=1.15)
if yaw is not None:
ypr = (yaw, pitch, roll)
if draw_output:
self.draw_head_pose(output_image, yaw, pitch, roll, bounding_box)
else:
ypr = None
landmarks, landmark_names = self.detect_facial_landmarks(rgb_image, bounding_box, enlarge_box=True, enlarge_scale=1.15)
if (landmarks is not None) and draw_output:
self.draw_landmarks(output_image, landmarks)
heads.append({'box':bounding_box, 'ypr':ypr, 'landmarks':landmarks})
return heads, output_image