You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
Tenny Yin 465acf5149
Merge 9566763ae8 into 7397a97a78
5 months ago
..
src/hello_helpers clean if-else 1 year ago
CMakeLists.txt initial public version 4 years ago
LICENSE.md Update copyright notices + remove old images 9 months ago
README.md Add docs for new HelloNode methods 1 year ago
package.xml Add ros_numpy dep to multiple packages 3 years ago
setup.py initial public version 4 years ago

README.md

Overview

hello_helpers mostly consists of the hello_helpers Python module. This module provides various Python files used across stretch_ros that have not attained sufficient status to stand on their own.

Capabilities

fit_plane.py : Fits planes to 3D data.

hello_misc.py : Various functions, including a helpful Python object with which to create ROS nodes.

hello_ros_viz.py : Various helper functions for vizualizations using RViz.

Typical Usage

import hello_helpers.fit_plane as fp
import hello_helpers.hello_misc as hm
import hello_helpers.hello_ros_viz as hr

API

Classes

HelloNode

This class is a convenience class for creating a ROS node for Stretch. The most common way to use this class is to extend it. In your extending class, the main funcion would call HelloNode's main function. This would look like:

import hello_helpers.hello_misc as hm

class MyNode(hm.HelloNode):
    def __init__(self):
        hm.HelloNode.__init__(self)

    def main(self):
        hm.HelloNode.main(self, 'my_node', 'my_node', wait_for_first_pointcloud=False)
        # my_node's main logic goes here

node = MyNode()
node.main()

There is also a one-liner class method for instantiating a HelloNode for easy prototyping. One example where this is handy is sending pose commands from iPython:

# roslaunch the stretch launch file beforehand

import hello_helpers.hello_misc as hm
temp = hm.HelloNode.quick_create('temp')
temp.move_to_pose({'joint_lift': 0.4})

Attributes

joint_states

This attribute gives you the entire joint state of the robot as a JointState message. The utility method get_joint_state() is an easier alternative to parsing the JointState message.

point_cloud

This attribute is a PointCloud2 message as seen by the head camera. The utility method get_point_cloud() is an easier alternative to parsing the PointCloud2 message.

tool

This attribute is the name of the end-effector as a string. You can use this attribute to flag an error for other Stretch users if their robot isn't configured with the correct tool. Most commonly, this attribute will be either 'tool_stretch_dex_wrist' or 'tool_stretch_gripper'. To learn about the other end-effectors available for Stretch, or how to create your own and plug it into Stretch's ROS driver, check out the documentation on tools.

mode

This attribute is the mode the robot's driver is in, as a string. See the driver's API to learn more about driver modes.

dryrun

This attribute allows you to control whether the robot actually moves when calling move_to_pose(), home_the_robot(), stow_the_robot(), or other motion methods in this class. When dryrun is set to True, these motion methods return immediately. This attribute is helpful when you want to run just the perception/planning part of your node without actually moving the robot. For example, you could replace the following verbose snippet:

# roslaunch the stretch launch file beforehand
import hello_helpers.hello_misc as hm
temp = hm.HelloNode.quick_create('temp')
actually_move = False
[...]
if actually_move:
    temp.move_to_pose({'translate_mobile_base': 1.0})

to be more consise:

# roslaunch the stretch launch file beforehand
import hello_helpers.hello_misc as hm
temp = hm.HelloNode.quick_create('temp')
[...]
temp.dryrun = True
temp.move_to_pose({'translate_mobile_base': 1.0})

Methods

move_to_pose(pose, return_before_done=False, custom_contact_thresholds=False, custom_full_goal=False)

This method takes in a dictionary that describes a desired pose for the robot and communicates with stretch_driver to execute it. The basic format of this dictionary is string/number key/value pairs, where the keys are joint names and the values are desired position goals. For example, {'joint_lift': 0.5} would put the lift at 0.5m in its joint range. A full list of command-able joints is published to the /stretch/joint_states topic. Used within a node extending HelloNode, calling this method would look like:

self.move_to_pose({'joint_lift': 0.5})

Internally, this dictionary is converted into a FollowJointTrajectoryGoal that is sent to a FollowJointTrajectory action server in stretch_driver. This method waits by default for the server to report that the goal has completed executing. However, you can return before the goal has completed by setting the return_before_done argument to True. This can be useful for preempting goals.

There are two additional arguments that enable you to customize how the pose is executed. If you set custom_contact_thresholds to True, this method expects a different format dictionary: string/tuple key/value pairs, where the keys are still joint names, but the values are (position_goal, effort_threshold). The addition of a effort threshold enables you to detect when a joint has made contact with something in the environment, which is useful for manipulation or safe movements. For example, {'joint_arm': (0.5, 20)} commands the telescoping arm fully out (the arm is nearly fully extended at 0.5 meters) but with a low enough effort threshold (20% of the arm motor's max effort) that the motor will stop when the end of arm has made contact with something. Again, in a node, this would look like:

self.move_to_pose({'joint_arm': (0.5, 40)}, custom_contact_thresholds=True)

If you set custom_full_goal to True, the dictionary format is string/tuple key/value pairs, where keys are joint names again, but values are (position_goal, velocity, acceleration, effort_threshold). The velocity and acceleration components allow you to customize the trajectory profile the joint follows while moving to the goal position. In the following example, the arm telescopes out slowly until contact is detected:

self.move_to_pose({'joint_arm': (0.5, 0.01, 0.01, 40)}, custom_full_goal=True)
home_the_robot()

This is a convenience method to interact with the driver's /home_the_robot service.

stow_the_robot()

This is a convenience method to interact with the driver's /stow_the_robot service.

stop_the_robot()

This is a convenience method to interact with the driver's /stop_the_robot service.

get_tf(from_frame, to_frame)

Use this method to get the transform (geometry_msgs/TransformStamped) between two frames. This method is blocking. For example, this method can do forward kinematics from the base_link to the link between the gripper fingers, link_grasp_center, using:

# roslaunch the stretch launch file beforehand

import hello_helpers.hello_misc as hm
temp = hm.HelloNode.quick_create('temp')
t = temp.get_tf('base_link', 'link_grasp_center')
print(t.transform.translation)
get_joint_state(joint_name, moving_threshold=0.001)

Use this method to retrieve the joint state for a single joint. It will return a tuple with joint position, velocity, effort, and is_moving as a boolean (checked against the moving_threshold argument). For example:

# roslaunch the stretch launch file beforehand

import hello_helpers.hello_misc as hm
temp = hm.HelloNode.quick_create('temp')
pos, vel, eff, is_moving = temp.get_joint_state('joint_head_pan')
print(f"The head pan is {'' if is_moving else 'not'} moving")
get_point_cloud()

Use this method to retrieve the point cloud seen by the head camera as a Numpy array. It will return a tuple with a named array, Nx3 3D point array, timestamp at which the point was captured, and TF frame in which the cloud was captured. For example:

# roslaunch the stretch launch file beforehand

import hello_helpers.hello_misc as hm
temp = hm.HelloNode.quick_create('temp')
cloud, cloud_xyz, capture_time, capture_frame = temp.get_point_cloud()
print(f"Head camera saw a cloud of size {cloud_xyz.shape} in frame {capture_frame} at {capture_time}")
# Head camera saw a cloud of size (275925, 3) in frame camera_color_optical_frame at 1695973195045439959

import numpy as np
i = np.argmax(cloud['z'])
print(f"If the capture frame is camera_color_optical_frame (i.e. z axis points out from camera), the point furthest from the camera is {np.sqrt(cloud['x'][i]**2 + cloud['y'][i]**2 + cloud['z'][i]**2):.2f}m away and has the color {(cloud['r'][i], cloud['g'][i], cloud['b'][i])}")
# If the capture frame is camera_color_optical_frame (i.e. z axis points out from camera), the point furthest from the camera is 1.81m away and has the color (118, 121, 103)
get_robot_floor_pose_xya(floor_frame='odom')

Returns the current estimated x, y position and angle of the robot on the floor. This is typically called with respect to the odom frame or the map frame. x and y are in meters and the angle is in radians.

main(node_name, node_topic_namespace, wait_for_first_pointcloud=True)

When extending the HelloNode class, call this method at the very beginning of your main() method. This method handles setting up a few ROS components, including registering the node with the ROS server, creating a TF listener, creating a FollowJointTrajectory client for the move_to_pose() method, subscribing to depth camera point cloud topic, and connecting to the quick-stop service.

Since it takes up to 30 seconds for the head camera to start streaming data, the wait_for_first_pointcloud argument will get the node to wait until it has seen camera data, which is helpful if your node is processing camera data.

quick_create(name, wait_for_first_pointcloud=False)

A class level method for quick testing. This allows you to avoid having to extend HelloNode to use it.

# roslaunch the stretch launch file beforehand

import hello_helpers.hello_misc as hm
temp = hm.HelloNode.quick_create('temp')
temp.move_to_pose({'joint_lift': 0.4})

Subscribed Topics

/camera/depth/color/points (sensor_msgs/PointCloud2)

Provides a point cloud as currently seen by the Realsense depth camera in Stretch's head. Accessible from the self.point_cloud attribute.

# roslaunch the stretch launch file beforehand

import hello_helpers.hello_misc as hm
temp = hm.HelloNode.quick_create('temp', wait_for_first_pointcloud=True)
print(temp.point_cloud)

Subscribed Services

/stop_the_robot (std_srvs/Trigger)

Provides a service to quickly stop any motion currently executing on the robot.

# roslaunch the stretch launch file beforehand

from std_srvs.srv import TriggerRequest
import hello_helpers.hello_misc as hm
temp = hm.HelloNode.quick_create('temp')
temp.stop_the_robot_service(TriggerRequest())

License

For license information, please see the LICENSE files.